The MIMS Spatial Allocator: A Tool for Generating Emission Surrogates without a Geographic Information System

Alison M. Eyth, Kimberly Hanisak
Carolina Environmental Program
University of North Carolina at Chapel Hill
May 1, 2003

Multimedia Integrated Modeling System (MIMS)

- Program sponsored by EPA Office of Research and Development
- Successor to Models-3 Computer Framework
- Components:
 - Java-based computer framework for running multimedia (and other complex) models
 - Spatial allocator, Analysis engine, etc.
 - Framework contains tool for designing/visualizing air quality model grids (also developed by MCNC)
- Free to users
 - mostly open source components, but some proprietary (but free) libraries
- http://www.epa.gov/asmdnerl/mims

MIMS Spatial Allocator

- Initially developed at MCNC
 - Most of MCNC EMC is now at UNC Chapel Hill
 - New version provided in March with optimizations, new features, and bug fixes
- Operating modes:
 - Generates spatial surrogates that can be input to SMOKE
 - Change map projection of Shapefiles
 - Performs other types of spatial allocation
 - Aggregate county data to state data
 - Convert between county data and gridded data

Benefits of Spatial Allocator

- Zero cost makes surrogate generation accessible to more people
- Focused purpose of software makes it easier to use to create surrogates than a GIS
- Runs on UNIX and Windows
- Input data in commonly used ESRI Shapefile format
- Output Surrogates
 - Computed for regular grid (but could support adaptive grids)
 - Written in SMOKE format (but other formats could be added)
 - Supported map projections include Universal Transverse Mercator (UTM), Lambert Conformal, and Latitude-Longitude

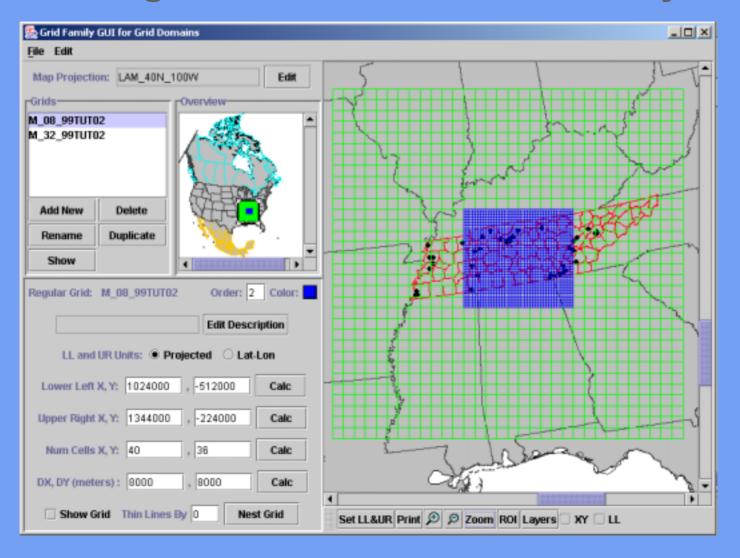
What are Spatial Surrogates?

- Used to map county level emission inventory data into the rectangular grid cells used by air quality models
 - For example, dry cleaning emissions values may be available for a county, but CMAQ requires them by grid cell
- Surrogate value is the fraction of the emissions for a county that should be apportioned to a grid cell
- emis(GC) = srg(Cty,GC) * emis(Cty)
- Surrogates allow for more spatial accuracy in emissions distribution than assuming a uniform spread over the county
 - E.g. Applying a population surrogate causes higher levels emissions to be placed in the grid cells that cover more densely populated parts of the county

Computing Spatial Surrogates

$$srg(Cty,GC) = \frac{Wt(Cty \cap GC)}{Wt(Cty)}$$

- Surrogates are computed using a fraction
- Numerator = the value of a weight attribute in the area of intersection between the grid cell and county
- Denominator = the value of a weight attribute in the entire county
- Sum of surrogates values for each county within the grid should be 1
- Weight attributes can be based on objects that are points, lines, or polygons (e.g. port berths, railroads, population)
- Sometimes use number of points, length, or area for weight


Impact of Weight Attribute on Surrogate Values

Grid Cell	# Ports in gc i, cty C	# Berths in gc i, cty C	Surrogate wt=Count	Surrogate wt=Berths
1	0	0	0	0
2	1	6	1 / 4 = 0.25	6 / 12 = 0.5
3	2	6	2 / 4 = 0.5	6 / 12 = 0.5
4	1	0	1 / 4 = 0.25	0
Total	4	12	1	1

Using the GRIDDESC File to Specify the Output Grid

```
! coords --line: name; type, P-alpha, P-beta, P-gamma, xcent, ycent
'LAT LON'
1, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0
'UTM 10'
5, 10.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0
'LAM 40N105W'
2, 30.0D0, 60.D0,-105.D0,-105.D0, 40.D0
''! end coords. Grid name;xorig,yorig,xcell,ycell,ncols,nrows,nthik
'EPAW36 56X78'
'LAT_LON', -127.0D0, 26.0D0, 0.5000D0, 0.33333D0, 56, 78, 1
'NEW YORK'
'UTM_18', 480.0D3, 4440.0D3, 5.0D3, 5.0D3, 58, 46, 1'
'DENVER8_34X45'
'LAM 40N105W', -116.D3, -188.D3, 8.D3, 8.D3, 34, 45, 1
```

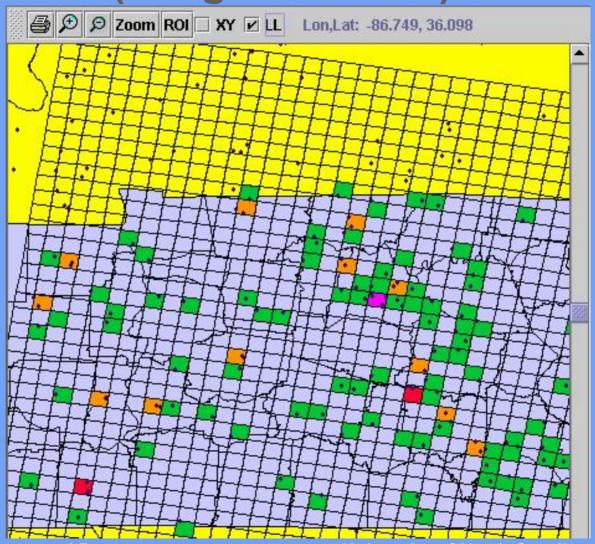
Visualizing Grids with MIMS Grid Family GUI

Example Windows .bat for Ports Surrogate

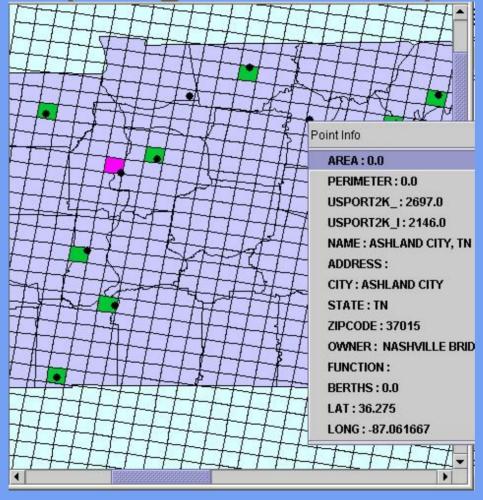
```
set MIMS_PROCESSING=SURROGATE
set POLY_OUT_TYPE=RegularGrid
set DATA=C:\surrogates\inputs
set GRIDDESC=%DATA%\GRIDDESC.txt
set GRID=M_08_99NASH
```

```
set POLY_DATA_TYPE=ShapeFile
set POLY_DATA=%DATA%\cnty_tn
set ATTR_DATA_ID=FIPS_CODE
set POLY_WEIGHT_TYPE=ShapeFile
set POLY_WEIGHT=%DATA%\tn_ports
set ATTR_WEIGHT=BERTHS
set CATEGORY_WEIGHT=4
```

set SURROGATE_FILE=C:\surrogates\output\srg_ports.%GRID%.txt C:\surrogates\bin\mims_spatial.exe


Quality Assurance Options for Surrogates

- OUTPUT_SRG_NUMERATOR: writes surrogate numerator as a comment in output file
- OUTPUT_SRG_DENOMINATOR: writes surrogate denominator as a comment in output file
- MIMS_QASUM: writes a running sum of the surrogate values for each county in output file (should sum to 1)
- POLY_OUT_NAME: creates a shape file (and .csv file) that contain sums of the surrogate numerators for each grid cell (gridded version of weight attribute


Excerpt of Surrogate Output with Quality Assurance Options On

Cat	County	Col	Row	Srg value	N	lumerator	Denominator	QA Sum
4	47011	44	20	1	Ţ	8	8	1
4	47037	19	28	0.2	Ţ	2	10	0.2
4	47037	20	27	0.3	!	3	10	0.5
4	47037	20	28	0.3	Ţ	3	10	0.8
4	47037	21	29	0.2	!	2	10	1
4	47039	6	18	1	Ţ	3	3	1
5	47027	32	34	0.491036	Ţ	12917.80	26307.3	0.49104
5	47027	32	35	0.005787	!	152.24	26307.3	0.49682
5	47027	33	35	0.338548	Ţ	8906.28	26307.3	0.83537
5	47027	33	36	0.164629	!	4330.96	26307.3	1

GIST Visualization of Airport Surrogate (Weight = Count)

GIST Visualization of Port Surrogate (Weight = Berths)

Specifying Map Projections and Ellipsoids

- PROJ.4 library is used (http://www.remotesensiong.org/proj)
- Supports most map projections
- Lambert conformal example: setenv DATA_POLY_MAP_PRJN "+proj=lcc,+lat_1=33,+lat_2=45,+lat_0=40,+lon_0=-97"
- UTM example: setenv WEIGHT POLY MAP PRJN "+proj=utm,+zone=17"
- Ellipsoid examples:
 - setenv WEIGHT_POLY_ELLIPSOID=+GRS80
 - setenv WEIGHT_POLY_ELLIPSOID=+a=6378137.0,+rf=298.2572

Converting the Map Projection of Shapefiles

```
setenv MIMS PROCESSING CONVERT SHAPE
setenv POLY_DATA_TYPE ShapeFile
setenv POLY DATA $argv[1] # no extension
setenv POLY OUT TYPE ShapeFile
setenv POLY OUT NAME $argv[2] # no extension
seteny DATA POLY MAP PRJN
  "+proj=lcc,+lat 1=33,+lat 2=45,+lat 0=40,+lon_0=-97"
setenv DATA POLY ELLIPSOID +WGS84
setenv OUTPUT POLY MAP PRJN LATLON
setenv OUTPUT POLY ELLIPSOID SPHERE
/apps/mims spatial/bin/mims spatial.exe
```

#!/bin/csh -f

Software Implementation

- Software is written in C
- Blocks of code to perform specific tasks that are reused for different operating modes
 - First read data (then weight) polygons & convert map projection to output projection
 - Next compute intersection of weight and data polygons (then of weight-data polygons with grid polygons)
 - Then compute surrogates
 - Numerator = sum of weight for each county and gc
 - Denominator = sum of weight for each county
- Public domain libraries used
 - PROJ.4 for map projection conversions
 - Shapelib for reading / writing shapefiles
 - Generic Polygon Clipper for polygon intersection

Limitations

- Currently only SMOKE-ready output
- Output assumed to be on sphere
- Line-based inputs must be "dissolved" at the county boundaries

Future Directions

- Produce biogenic inputs for SMOKE
- Easier conversion between county and gridded data
- Generalize spatial allocation to support more forms of regridding
- Create surrogates for adaptive and other nonregular grids
- Further reduce memory usage to support use of larger data sets (~ 1 GB)

Jason Eyth Cobb 3/30/2003 6 lbs 14 oz (1.97 kg)

Overall Surrogate equation

$$Wt(Cty \cap GC) = \sum_{wp} Wt(wp) * \frac{area(wp \cap Cty \cap GC)}{area(wp)}$$

$$Wt(cty) = \sum_{wp} Wt(wp) * \frac{area(wp \cap Cty)}{area(wp)}$$

Where Wt(x) = value of weight attribute for x, Cty = County, GC = grid cell, wp = weight polygon